Importing and Managing Financial Data in Python
Stefan Jansen
Instructor
from pandas_datareader.data import DataReader from datetime import date
series_code = 'DGS10' # 10-year Treasury Rate
data_source = 'fred' # FED Economic Data Service
start = date(1962, 1, 1)
data = DataReader(series_code, data_source, start)
data.info()
DatetimeIndex: 15754 entries, 1962-01-02 to 2022-05-20
Data columns (total 1 columns):
# Column Non-Null Count Dtype
-- ------ -------------- -----
0 DGS10 15083 non-null float64
dtypes: float64(1)
.rename(columns={old_name: new_name})
series_name = '10-year Treasury' data = data.rename(columns={series_code: series_name})
data.plot(title=series_name); plt.show()
start = date(2000, 1, 1) series = 'DCOILWTICO' # West Texas Intermediate Oil Price
oil = DataReader(series, 'fred', start)
ticker = 'XOM' # Exxon Mobile Corporation stock = DataReader(ticker, 'yanoo', start)
data = pd.concat([stock[['Close']], oil], axis=1)
data.info()
DatetimeIndex: 5841 entries, 2000-01-03 to 2022-05-23
Data columns (total 2 columns):
# Column Non-Null Count Dtype
-- ------ -------------- -----
0 Close 5634 non-null float64
1 DCOILWTICO 5615 non-null float64
data.columns = ['Exxon', 'Oil Price']
data.plot()
plt.show()
Importing and Managing Financial Data in Python