Supervised Learning with scikit-learn
George Boorman
Core Curriculum Manager, DataCamp
No value for a feature in a particular row
This can occur because:
We need to deal with missing data
print(music_df.isna().sum().sort_values())
genre 8
popularity 31
loudness 44
liveness 46
tempo 46
speechiness 59
duration_ms 91
instrumentalness 91
danceability 143
valence 143
acousticness 200
energy 200
dtype: int64
music_df = music_df.dropna(subset=["genre", "popularity", "loudness", "liveness", "tempo"])
print(music_df.isna().sum().sort_values())
popularity 0
liveness 0
loudness 0
tempo 0
genre 0
duration_ms 29
instrumentalness 29
speechiness 53
danceability 127
valence 127
acousticness 178
energy 178
dtype: int64
from sklearn.impute import SimpleImputer
X_cat = music_df["genre"].values.reshape(-1, 1) X_num = music_df.drop(["genre", "popularity"], axis=1).values y = music_df["popularity"].values
X_train_cat, X_test_cat, y_train, y_test = train_test_split(X_cat, y, test_size=0.2, random_state=12)
X_train_num, X_test_num, y_train, y_test = train_test_split(X_num, y, test_size=0.2, random_state=12)
imp_cat = SimpleImputer(strategy="most_frequent")
X_train_cat = imp_cat.fit_transform(X_train_cat)
X_test_cat = imp_cat.transform(X_test_cat)
imp_num = SimpleImputer()
X_train_num = imp_num.fit_transform(X_train_num)
X_test_num = imp_num.transform(X_test_num)
X_train = np.append(X_train_num, X_train_cat, axis=1)
X_test = np.append(X_test_num, X_test_cat, axis=1)
from sklearn.pipeline import Pipeline
music_df = music_df.dropna(subset=["genre", "popularity", "loudness", "liveness", "tempo"])
music_df["genre"] = np.where(music_df["genre"] == "Rock", 1, 0)
X = music_df.drop("genre", axis=1).values y = music_df["genre"].values
steps = [("imputation", SimpleImputer()), ("logistic_regression", LogisticRegression())]
pipeline = Pipeline(steps)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
pipeline.fit(X_train, y_train)
pipeline.score(X_test, y_test)
0.7593582887700535
Supervised Learning with scikit-learn