Intermediate Python
Hugo Bowne-Anderson
Data Scientist at DataCamp
country capital area population
BR Brazil Brasilia 8.516 200.40
RU Russia Moscow 17.100 143.50
IN India New Delhi 3.286 1252.00
CH China Beijing 9.597 1357.00
SA South Africa Pretoria 1.221 52.98
dfloop.py
import pandas as pd
brics = pd.read_csv("brics.csv", index_col = 0)
dfloop.py
import pandas as pd brics = pd.read_csv("brics.csv", index_col = 0)
for val in brics : print(val)
country
capital
area
population
dfloop.py
import pandas as pd brics = pd.read_csv("brics.csv", index_col = 0)
for lab, row in brics.iterrows(): print(lab) print(row)
BR
country Brazil
capital Brasilia
area 8.516
population 200.4
Name: BR, dtype: object
...
RU
country Russia
capital Moscow
area 17.1
population 143.5
Name: RU, dtype: object
IN ...
dfloop.py
import pandas as pd brics = pd.read_csv("brics.csv", index_col = 0)
for lab, row in brics.iterrows(): print(lab + ": " + row["capital"])
BR: Brasilia
RU: Moscow
IN: New Delhi
CH: Beijing
SA: Pretoria
dfloop.py
import pandas as pd brics = pd.read_csv("brics.csv", index_col = 0)
for lab, row in brics.iterrows() : # - Creating Series on every iteration brics.loc[lab, "name_length"] = len(row["country"])
print(brics)
country capital area population name_length
BR Brazil Brasilia 8.516 200.40 6
RU Russia Moscow 17.100 143.50 6
IN India New Delhi 3.286 1252.00 5
CH China Beijing 9.597 1357.00 5
SA South Africa Pretoria 1.221 52.98 12
dfloop.py
import pandas as pd brics = pd.read_csv("brics.csv", index_col = 0)
brics["name_length"] = brics["country"].apply(len)
print(brics)
country capital area population name_length
BR Brazil Brasilia 8.516 200.40 6
RU Russia Moscow 17.100 143.50 6
IN India New Delhi 3.286 1252.00 5
CH China Beijing 9.597 1357.00 5
SA South Africa Pretoria 1.221 52.98 12
Intermediate Python