Intermediate Python
Hugo Bowne-Anderson
Data Scientist at DataCamp
brics
country capital area population
BR Brazil Brasilia 8.516 200.40
RU Russia Moscow 17.100 143.50
IN India New Delhi 3.286 1252.00
CH China Beijing 9.597 1357.00
SA South Africa Pretoria 1.221 52.98
dict = {
"country":["Brazil", "Russia", "India", "China", "South Africa"],
"capital":["Brasilia", "Moscow", "New Delhi", "Beijing", "Pretoria"],
"area":[8.516, 17.10, 3.286, 9.597, 1.221]
"population":[200.4, 143.5, 1252, 1357, 52.98] }
import pandas as pd
brics = pd.DataFrame(dict)
brics
area capital country population
0 8.516 Brasilia Brazil 200.40
1 17.100 Moscow Russia 143.50
2 3.286 New Delhi India 1252.00
3 9.597 Beijing China 1357.00
4 1.221 Pretoria South Africa 52.98
brics.index = ["BR", "RU", "IN", "CH", "SA"]
brics
area capital country population
BR 8.516 Brasilia Brazil 200.40
RU 17.100 Moscow Russia 143.50
IN 3.286 New Delhi India 1252.00
CH 9.597 Beijing China 1357.00
SA 1.221 Pretoria South Africa 52.98
brics.csv
,country,capital,area,population
BR,Brazil,Brasilia,8.516,200.4
RU,Russia,Moscow,17.10,143.5
IN,India,New Delhi,3.286,1252
CH,China,Beijing,9.597,1357
SA,South Africa,Pretoria,1.221,52.98
brics.csv
,country,capital,area,population
BR,Brazil,Brasilia,8.516,200.4
RU,Russia,Moscow,17.10,143.5
IN,India,New Delhi,3.286,1252
CH,China,Beijing,9.597,1357
SA,South Africa,Pretoria,1.221,52.98
brics = pd.read_csv("path/to/brics.csv")
brics
Unnamed: 0 country capital area population
0 BR Brazil Brasilia 8.516 200.40
1 RU Russia Moscow 17.100 143.50
2 IN India New Delhi 3.286 1252.00
3 CH China Beijing 9.597 1357.00
4 SA South Africa Pretoria 1.221 52.98
brics = pd.read_csv("path/to/brics.csv", index_col = 0)
brics
country population area capital
BR Brazil 200 8515767 Brasilia
RU Russia 144 17098242 Moscow
IN India 1252 3287590 New Delhi
CH China 1357 9596961 Beijing
SA South Africa 55 1221037 Pretoria
Intermediate Python