Pandas, parte 1

Python intermedio

Hugo Bowne-Anderson

Data Scientist at DataCamp

Ejemplos de conjuntos de datos tabulares

ch2_3_slides.003.png

Python intermedio

Ejemplos de conjuntos de datos tabulares

ch2_3_slides.005.png

Python intermedio

Ejemplos de conjuntos de datos tabulares

ch2_3_slides.007.png

Python intermedio

Conjuntos de datos en Python

  • ¿Matriz 2D de NumPy?
    • Un tipo de datos
Python intermedio

Conjuntos de datos en Python

ch2_3_slides.012.png

Python intermedio

Conjuntos de datos en Python

ch2_3_slides.013.png

  • pandas
    • Herramienta de manipulación de datos de alto nivel
    • Wes McKinney
    • Basado en NumPy
    • DataFrame
Python intermedio

DataFrame

brics
         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
Python intermedio

DataFrame a partir de diccionario

dict = { 
    "country":["Brazil", "Russia", "India", "China", "South Africa"],
    "capital":["Brasilia", "Moscow", "New Delhi", "Beijing", "Pretoria"],
       "area":[8.516, 17.10, 3.286, 9.597, 1.221]
 "population":[200.4, 143.5, 1252, 1357, 52.98] }
  • claves (etiquetas de columna)
  • valores (datos, columna por columna)
import pandas as pd

brics = pd.DataFrame(dict)
Python intermedio

DataFrame a partir de diccionario (2)

brics
     area    capital       country  population
0   8.516   Brasilia        Brazil      200.40
1  17.100     Moscow        Russia      143.50
2   3.286  New Delhi         India     1252.00
3   9.597    Beijing         China     1357.00
4   1.221   Pretoria  South Africa       52.98
brics.index = ["BR", "RU", "IN", "CH", "SA"]

brics
      area    capital       country  population
BR   8.516   Brasilia        Brazil      200.40
RU  17.100     Moscow        Russia      143.50
IN   3.286  New Delhi         India     1252.00
CH   9.597    Beijing         China     1357.00
SA   1.221   Pretoria  South Africa       52.98
Python intermedio

DataFrame a partir de archivo CSV

brics.csv

,country,capital,area,population
BR,Brazil,Brasilia,8.516,200.4
RU,Russia,Moscow,17.10,143.5
IN,India,New Delhi,3.286,1252
CH,China,Beijing,9.597,1357
SA,South Africa,Pretoria,1.221,52.98
  • CSV = valores separados por comas
Python intermedio

DataFrame a partir de archivo CSV

  • brics.csv
,country,capital,area,population
BR,Brazil,Brasilia,8.516,200.4
RU,Russia,Moscow,17.10,143.5
IN,India,New Delhi,3.286,1252
CH,China,Beijing,9.597,1357
SA,South Africa,Pretoria,1.221,52.98
brics = pd.read_csv("path/to/brics.csv")

brics
  Unnamed: 0       country    capital    area  population
0         BR        Brazil   Brasilia   8.516      200.40
1         RU        Russia     Moscow  17.100      143.50
2         IN         India  New Delhi   3.286     1252.00
3         CH         China    Beijing   9.597     1357.00
4         SA  South Africa   Pretoria   1.221       52.98
Python intermedio

DataFrame a partir de archivo CSV

brics = pd.read_csv("path/to/brics.csv", index_col = 0)

brics
         country  population      area    capital
BR        Brazil         200   8515767   Brasilia
RU        Russia         144  17098242     Moscow
IN         India        1252   3287590  New Delhi
CH         China        1357   9596961    Beijing
SA  South Africa          55   1221037   Pretoria
Python intermedio

¡Vamos a practicar!

Python intermedio

Preparing Video For Download...