Pandas, parte 2

Python intermedio

Hugo Bowne-Anderson

Data Scientist at DataCamp

brics

import pandas as pd
brics = pd.read_csv("path/to/brics.csv", index_col = 0)
brics
         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
Python intermedio

Indexar y seleccionar datos

  • Corchetes
  • Métodos avanzados
    • loc
    • iloc
Python intermedio

Acceso a columnas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics["country"]
BR          Brazil
RU          Russia
IN           India
CH           China
SA    South Africa
Name: country, dtype: object
Python intermedio

Acceso a columnas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
type(brics["country"])
pandas.core.series.Series
  • Matriz etiquetada 1D
Python intermedio

Acceso a columnas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[["country"]]
         country
BR        Brazil
RU        Russia
IN         India
CH         China
SA  South Africa
Python intermedio

Acceso a columnas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
type(brics[["country"]])
pandas.core.frame.DataFrame
Python intermedio

Acceso a columnas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermedio

Acceso a filas [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[1:4]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermedio

Acceso a filas [ ]

         country    capital    area  population 
BR        Brazil   Brasilia   8.516      200.40    * 0 *
RU        Russia     Moscow  17.100      143.50    * 1 *
IN         India  New Delhi   3.286     1252.00    * 2 *
CH         China    Beijing   9.597     1357.00    * 3 *
SA  South Africa   Pretoria   1.221       52.98    * 4 *
brics[1:4]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermedio

Debate [ ]

  • Corchetes: funcionalidad limitada
  • Idealmente
    • Matrices 2D de NumPy
    • my_array[rows, columns]
  • pandas
    • loc (basado en etiquetas)
    • iloc (basado en posiciones de enteros)
Python intermedio

Acceso a filas loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc["RU"]
country       Russia
capital       Moscow
area            17.1
population     143.5
Name: RU, dtype: object
  • Fila como serie de pandas
Python intermedio

Acceso a filas loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU"]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
  • DataFrame
Python intermedio

Acceso a filas loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermedio

Fila y columna loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"], ["country", "capital"]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermedio

Fila y columna loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[:, ["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermedio

Resumen

  • Corchetes
    • Acceso a columnas brics[["country", "capital"]]
    • Acceso a filas: solo mediante slices brics[1:4]
  • loc (basado en etiquetas)
    • Acceso a filas brics.loc[["RU", "IN", "CH"]]
    • Acceso a columnas brics.loc[:, ["country", "capital"]]
    • Acceso a filas y columnas
      brics.loc[
      ["RU", "IN", "CH"], 
      ["country", "capital"]
      ]
      
Python intermedio

Acceso a filas iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU"]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
brics.iloc[[1]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
Python intermedio

Acceso a filas iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermedio

Acceso a filas iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[[1,2,3]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermedio

Fila y columna iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"], ["country", "capital"]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermedio

Fila y columna iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[[1,2,3], [0, 1]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermedio

Fila y columna iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[:, ["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermedio

Fila y columna iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[:, [0,1]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermedio

¡Vamos a practicar!

Python intermedio

Preparing Video For Download...