Intermediate Python
Hugo Bowne-Anderson
Data Scientist at DataCamp
import pandas as pd
brics = pd.read_csv("path/to/brics.csv", index_col = 0)
brics
country capital area population
BR Brazil Brasilia 8.516 200.40
RU Russia Moscow 17.100 143.50
IN India New Delhi 3.286 1252.00
CH China Beijing 9.597 1357.00
SA South Africa Pretoria 1.221 52.98
country capital area population
BR Brazil Brasilia 8.516 200.40
RU Russia Moscow 17.100 143.50
IN India New Delhi 3.286 1252.00
CH China Beijing 9.597 1357.00
SA South Africa Pretoria 1.221 52.98
country capital area population
BR Brazil Brasilia 8.516 200.40
RU Russia Moscow 17.100 143.50
IN India New Delhi 3.286 1252.00
CH China Beijing 9.597 1357.00
SA South Africa Pretoria 1.221 52.98
brics["area"]
BR 8.516
RU 17.100
IN 3.286
CH 9.597
SA 1.221
Name: area, dtype: float64 # - Need Pandas Series
brics.loc[:,"area"]
brics.iloc[:,2]
brics["area"]
BR 8.516
RU 17.100
IN 3.286
CH 9.597
SA 1.221
Name: area, dtype: float64
brics["area"] > 8
BR True
RU True
IN False
CH True
SA False
Name: area, dtype: bool
is_huge = brics["area"] > 8
is_huge
BR True
RU True
IN False
CH True
SA False
Name: area, dtype: bool
brics[is_huge]
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
country capital area population
BR Brazil Brasilia 8.516 200.40
RU Russia Moscow 17.100 143.50
IN India New Delhi 3.286 1252.00
CH China Beijing 9.597 1357.00
SA South Africa Pretoria 1.221 52.988
is_huge = brics["area"] > 8
brics[is_huge]
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
brics[brics["area"] > 8]
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
country capital area population
BR Brazil Brasilia 8.516 200.40
RU Russia Moscow 17.100 143.50
IN India New Delhi 3.286 1252.00
CH China Beijing 9.597 1357.00
SA South Africa Pretoria 1.221 52.98
import numpy as np
np.logical_and(brics["area"] > 8, brics["area"] < 10)
BR True
RU False
IN False
CH True
SA False
Name: area, dtype: bool
brics[np.logical_and(brics["area"] > 8, brics["area"] < 10)]
country capital area population
BR Brazil Brasilia 8.516 200.4
CH China Beijing 9.597 1357.0
Intermediate Python