Einführung in die Datenvisualisierung mit Seaborn
Erin Case
Data Scientist
Zwei Arten von Relationsdiagrammen: Streudiagramme und Liniendiagramme
Streudiagramme
Liniendiagramme


import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2_mean",
data=air_df_mean,
kind="scatter")
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2_mean",
data=air_df_mean,
kind="line")
plt.show()


import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2_mean", data=air_df_loc_mean, kind="line", style="location", hue="location")plt.show()

import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2_mean", data=air_df_loc_mean, kind="line", style="location", hue="location", markers=True)plt.show()

import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2_mean", data=air_df_loc_mean, kind="line", style="location", hue="location", markers=True, dashes=False)plt.show()


import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2",
data=air_df,
kind="scatter")
plt.show()

import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2",
data=air_df,
kind="line")
plt.show()

Schattierter Bereich ist das Konfidenzintervall

import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2", data=air_df, kind="line", ci="sd")plt.show()

import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2", data=air_df, kind="line", ci=None)plt.show()

Einführung in die Datenvisualisierung mit Seaborn