Developing LLM Applications with LangChain
Jonathan Bennion
AI Engineer & LangChain Contributor
Agents: use LLMs to take actions
Tools: functions called by the agent
What is the weather like in Kingston, Jamaica?
Thought: I should call Weather() to find the weather in Kingston, Jamaica.
Act: Weather("Kingston, Jamaica")
Observe: The weather is mostly sunny with temperatures of 82°F.
pip install langgraph==0.2.74
from langgraph.prebuilt import create_react_agent from langchain_community.agent_toolkits.load_tools import load_tools
llm = ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key) tools = load_tools(["llm-math"], llm=llm)
agent = create_react_agent(llm, tools)
messages = agent.invoke({"messages": [("human", "What is the square root of 101?")]})
print(messages)
{'messages': [
HumanMessage(content='What is the square root of 101?', ...),
AIMessage(content='', ..., tool_calls=[{'name': 'Calculator', 'args': {'__arg1': 'sqrt(101)'}, ...),
ToolMessage(content='Answer: 10.04987562112089', ...),
AIMessage(content='The square root of 101 is approximately 10.05.', ...)
]}
print(messages['messages'][-1].content)
The square root of 101 is approximately 10.05.
Developing LLM Applications with LangChain