Explainable AI in Python
Fouad Trad
Machine Learning Engineer
GRE Score | TOEFL Score | University Rating | SOP | LOR | CGPA | Chance of Admit | Accept |
---|---|---|---|---|---|---|---|
337 | 118 | 4 | 4.5 | 4.5 | 9.65 | 0.92 | 1 |
324 | 107 | 4 | 4 | 4.5 | 8.87 | 0.76 | 1 |
316 | 104 | 3 | 3 | 3.5 | 8 | 0.72 | 1 |
322 | 110 | 3 | 3.5 | 2.5 | 8.67 | 0.8 | 1 |
314 | 103 | 2 | 2 | 3 | 8.21 | 0.45 | 0 |
regressor
: predicts chance of admitclassifier
: predicts acceptanceX
from lime.lime_tabular import LimeTabularExplainer
instance = X.iloc[1,:]
explainer_reg = LimeTabularExplainer( X.values,
feature_names=X.columns,
mode='regression'
)
explanation_reg = explainer_reg.explain_instance(
instance.values,
regressor.predict
)
from lime.lime_tabular import LimeTabularExplainer
instance = X.iloc[1,:]
explainer_class = LimeTabularExplainer( X.values,
feature_names=X.columns,
mode='classification'
)
explanation_class = explainer_class.explain_instance(
instance.values,
classifier.predict_proba
)
explanation_reg.as_pyplot_figure()
explanation_class.as_pyplot_figure()
shap.waterfall_plot(...)
explanation_class.as_pyplot_figure()
Explainable AI in Python