Explainable AI in Python
Fouad Trad
Machine Learning Engineer
age | sex | chest_pain_type | blood_pressure | ecg_results | thalassemia | target |
---|---|---|---|---|---|---|
52 | 1 | 0 | 125 | 1 | 3 | 0 |
53 | 1 | 0 | 140 | 0 | 3 | 0 |
70 | 1 | 0 | 145 | 1 | 3 | 0 |
61 | 1 | 0 | 148 | 1 | 3 | 0 |
62 | 0 | 0 | 138 | 1 | 2 | 0 |
knn
: KNN classifier predicting risk of heart disease
explainer = shap.KernelExplainer(knn.predict_proba, shap.kmeans(X, 10))
test_instance = X.iloc[0, :]
shap_values = explainer.shap_values(test_instance)
print(shap_values.shape)
(6, 2)
shap.waterfall_plot(
shap.Explanation(
values=shap_values[:,1],
base_values=explainer.expected_value[1],
data=test_instance,
feature_names=X.columns
)
)
Explainable AI in Python