Intermediate Deep Learning with PyTorch
Michal Oleszak
Machine Learning Engineer
x
y
h
nn.RNN()
class Net(nn.Module): def __init__(self): super().__init__()
self.rnn = nn.RNN( input_size=1, hidden_size=32, num_layers=2, batch_first=True, )
self.fc = nn.Linear(32, 1)
def forward(self, x): h0 = torch.zeros(2, x.size(0), 32)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :]) return out
__init__
methodself.rnn
fc
forward()
, initialize first hidden state to zerosIntermediate Deep Learning with PyTorch