Intermediate Deep Learning with PyTorch
Michal Oleszak
Machine Learning Engineer
Error:
Squared Error:
Mean Squared Error:
Squaring the error:
criterion = nn.MSELoss()
(batch_size, seq_length, num_features)
(batch_size, seq_length)
for seqs, labels in dataloader_train:
print(seqs.shape)
torch.Size([32, 96])
seqs = seqs.view(32, 96, 1)
print(seqs.shape)
torch.Size([32, 96, 1])
Labels are of shape (batch_size)
for seqs, labels in test_loader:
print(labels.shape)
torch.Size([32])
Model outputs are (batch_size, 1)
out = net(seqs)
torch.Size([32, 1])
We can drop the last dimension from model outputs
out = net(seqs).squeeze()
torch.Size([32])
net = Net() criterion = nn.MSELoss() optimizer = optim.Adam( net.parameters(), lr=0.001 )
for epoch in range(num_epochs): for seqs, labels in dataloader_train:
seqs = seqs.view(32, 96, 1)
outputs = net(seqs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step()
mse = torchmetrics.MeanSquaredError()
net.eval() with torch.no_grad(): for seqs, labels in test_loader:
seqs = seqs.view(32, 96, 1)
outputs = net(seqs).squeeze()
mse(outputs, labels)
print(f"Test MSE: {mse.compute()}")
Test MSE: 0.13292162120342255
Test MSE: 0.13292162120342255
Test MSE: 0.12187089771032333
Intermediate Deep Learning with PyTorch