Einführung in NumPy
Izzy Weber
Core Curriculum Manager, DataCamp
Beispiele für Python-Datentypen:
int
float
Beispiele für NumPy-Datentypen:
np.int64
np.int32
np.float64
np.float32
Die Zahl 10436 in Binärform repräsentiert:
np.int32
kann 4.294.967.296 ganze Zahlen speichern:
Die Zahl 10436 in Binärform repräsentiert:
np.int32
kann 4.294.967.296 ganze Zahlen speichern:
np.array([1.32, 5.78, 175.55]).dtype
dtype('float64')
int_array = np.array([[1, 2, 3], [4, 5, 6]])
int_array.dtype
dtype('int64')
np.array(["Introduction", "to", "NumPy"]).dtype
dtype('<U12')
float32_array = np.array([1.32, 5.78, 175.55], dtype=np.float32)
float32_array.dtype
dtype('float32')
boolean_array = np.array([[True, False], [False, False]], dtype=np.bool_)
boolean_array.astype(np.int32)
array([[1, 0],
[0, 0]], dtype=int32)
np.array([True, "Boop", 42, 42.42])
array(['True', 'Boop', '42', '42.42'], dtype='<U5')
Hinzufügen eines floats zu einem integer-Array resultiert in Typkonvertierung aller integer zu float:
np.array([0, 42, 42.42]).dtype
dtype('float64')
Hinzufügen eines integers zu einem boolean-Array resultiert in Typkonvertierung aller booleans zu integer:
np.array([True, False, 42]).dtype
dtype('int64')
Einführung in NumPy