Transformer Models with PyTorch
James Chapman
Curriculum Manager, DataCamp
Orange | is | my | favorite | fruit | |
---|---|---|---|---|---|
Query: | Orange | ||||
Attention weights: | .21 | .03 | .05 | .31 | .40 |
Orange | is | my | favorite | fruit | |
---|---|---|---|---|---|
Query: | Orange | ||||
Attention weights: | .21 | .03 | .05 | .31 | .40 |
Orange | is | my | favorite | fruit | |
---|---|---|---|---|---|
Query: | Orange | ||||
Attention weights: | .21 | .03 | .05 | .31 | .40 |
import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads): super().__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads."
self.num_heads = num_heads self.d_model = d_model self.head_dim = d_model // num_heads
self.query_linear = nn.Linear(d_model, d_model, bias=False) self.key_linear = nn.Linear(d_model, d_model, bias=False) self.value_linear = nn.Linear(d_model, d_model, bias=False)
self.output_linear = nn.Linear(d_model, d_model)
num_heads
: no. of attention heads, each handling embeddings of size head_dim
bias=False
: no impact on performance while reducing complexity (only for inputs)def split_heads(self, x, batch_size):
seq_length = x.size(1) x = x.reshape(batch_size, seq_length, self.num_heads, self.head_dim) return x.permute(0, 2, 1, 3)
def compute_attention(self, query, key, value, mask=None):
scores = torch.matmul(query, key.transpose(-2, -1)) / (self.head_dim ** 0.5)
if mask is not None: scores = scores.masked_fill(mask == 0, float('-inf'))
attention_weights = F.softmax(scores, dim=-1) return torch.matmul(attention_weights, value)
def combine_heads(self, x, batch_size):
x = x.permute(0, 2, 1, 3).contiguous() return x.view(batch_size, -1, self.d_model)
compute_attention()
: compute attention weights using F.softmax()
torch.matmul(attention_weights, value)
: weighted sum of valuesdef forward(self, query, key, value, mask=None): batch_size = query.size(0) query = self.split_heads(self.query_linear(query), batch_size) key = self.split_heads(self.key_linear(key), batch_size) value = self.split_heads(self.value_linear(value), batch_size) attention_weights = self.compute_attention(query, key, value, mask)
output = self.combine_heads(attention_weights, batch_size)
return self.output_linear(output)
self.output_linear()
: concatenate and project head outputsTransformer Models with PyTorch