Traitement des données manquantes

Apprentissage supervisé avec scikit-learn

George Boorman

Core Curriculum Manager, DataCamp

Données manquantes

  • Aucune valeur pour une caractéristique dans une ligne particulière

  • Cela peut se produire pour les raisons suivantes :

    • Il n’y a peut-être pas d’observation
    • Les données peuvent être corrompues
  • Nous devons traiter les données manquantes

Apprentissage supervisé avec scikit-learn

Ensemble de données musicales

print(music_df.isna().sum().sort_values())
genre                 8
popularity           31
loudness             44
liveness             46
tempo                46
speechiness          59
duration_ms          91
instrumentalness     91
danceability        143
valence             143
acousticness        200
energy              200
dtype: int64
Apprentissage supervisé avec scikit-learn

Suppression des données manquantes

music_df = music_df.dropna(subset=["genre", "popularity", "loudness", "liveness", "tempo"])

print(music_df.isna().sum().sort_values())
popularity            0
liveness              0
loudness              0
tempo                 0
genre                 0
duration_ms          29
instrumentalness     29
speechiness          53
danceability        127
valence             127
acousticness        178
energy              178
dtype: int64
Apprentissage supervisé avec scikit-learn

Imputer des valeurs

  • Imputation : utiliser l’expertise du sujet pour remplacer les données manquantes par des estimations réalistes
  • Utilisation courante de la moyenne
  • On peut également utiliser la médiane ou une autre valeur
  • Pour les valeurs catégorielles, nous utilisons généralement la valeur la plus fréquente : le mode
  • Nous devons d’abord diviser nos données afin d’éviter les fuites de données
Apprentissage supervisé avec scikit-learn

Imputation avec scikit-learn

from sklearn.impute import SimpleImputer

X_cat = music_df["genre"].values.reshape(-1, 1) X_num = music_df.drop(["genre", "popularity"], axis=1).values y = music_df["popularity"].values
X_train_cat, X_test_cat, y_train, y_test = train_test_split(X_cat, y, test_size=0.2, random_state=12)
X_train_num, X_test_num, y_train, y_test = train_test_split(X_num, y, test_size=0.2, random_state=12)
imp_cat = SimpleImputer(strategy="most_frequent")
X_train_cat = imp_cat.fit_transform(X_train_cat)
X_test_cat = imp_cat.transform(X_test_cat)
Apprentissage supervisé avec scikit-learn

Imputation avec scikit-learn

imp_num = SimpleImputer()

X_train_num = imp_num.fit_transform(X_train_num)
X_test_num = imp_num.transform(X_test_num)
X_train = np.append(X_train_num, X_train_cat, axis=1)
X_test = np.append(X_test_num, X_test_cat, axis=1)
  • Les impacteurs sont connus sous le nom de transformateurs
Apprentissage supervisé avec scikit-learn

Imputation dans un pipeline

from sklearn.pipeline import Pipeline

music_df = music_df.dropna(subset=["genre", "popularity", "loudness", "liveness", "tempo"])
music_df["genre"] = np.where(music_df["genre"] == "Rock", 1, 0)
X = music_df.drop("genre", axis=1).values y = music_df["genre"].values
Apprentissage supervisé avec scikit-learn

Imputation dans un pipeline

steps = [("imputation", SimpleImputer()),
         ("logistic_regression", LogisticRegression())]

pipeline = Pipeline(steps)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
pipeline.fit(X_train, y_train)
pipeline.score(X_test, y_test)
0.7593582887700535
Apprentissage supervisé avec scikit-learn

Passons à la pratique !

Apprentissage supervisé avec scikit-learn

Preparing Video For Download...