Recap: Scalable AI Models with PyTorch Lightning

Scalable AI Models with PyTorch Lightning

Sergiy Tkachuk

Director, GenAI Productivity

Building scalable models with PyTorch Lightning

  • Neural network structuring
  • Effective training logic
  • LightningModule implementation
import lightning.pytorch as pl
import torch.nn as nn

class ClassificationModel(pl.LightningModule):
    def __init__(self, input_dim,
                 hidden_dim, num_class):
          # Initialize parent class
        super().__init__()
        # First layer
        self.layer1 = nn.Linear(input_dim,
                                hidden_dim)
        # Activation function
        self.relu = nn.ReLU()
        # Output layer
        self.layer2 = nn.Linear(hidden_dim,
                                num_class)
Scalable AI Models with PyTorch Lightning

Advanced techniques in PyTorch Lightning

  • Data management and preprocessing
  • Validation and testing methods
  • Lightning callbacks optimization
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint

checkpoint = ModelCheckpoint(
    monitor='val_accuracy',
    save_top_k=2,
    mode='max')
early_stopping = EarlyStopping(
    monitor='val_accuracy',
    patience=5,
    mode='max')
Scalable AI Models with PyTorch Lightning

Optimizing models for scalability

  • Model quantization strategies
  • Model pruning for efficiency
  • TorchScript for deployment
import torch
import torch.nn as nn

class SimpleModel(nn.Module):
    def forward(self, x):
        return x * 2

scripted_model = torch.jit.script(SimpleModel())

torch.jit.save(scripted_mod,"model.pt") # Save the model
loaded_model=torch.jit.load("model.pt") # Load the model
Scalable AI Models with PyTorch Lightning

Congratulations!

Scalable AI Models with PyTorch Lightning

Preparing Video For Download...