Graph RAG with LangChain and Neo4j
Adam Cowley
Manager, Developer Education at Neo4j










from langchain_neo4j import Neo4jChatMessageHistoryhistory = Neo4jChatMessageHistory(url=NEO4J_URI,username=NEO4J_USERNAME,password=NEO4J_PASSWORD,session_id="session_id_1",)# Add a human message history.add_user_message("hi!")# Add an AI message history.add_ai_message("what's up?")

from langchain_neo4j import Neo4jChatMessageHistory history = Neo4jChatMessageHistory( url=NEO4J_URI, username=NEO4J_USERNAME, password=NEO4J_PASSWORD, session_id="session_id_1",window=10 # defaults to 3 messages)# Get history print(history.messages)
[HumanMessage(content='hi!', ...), AIMessage(content='whats up?', ...)]
from pydantic import BaseModel, Field class ConversationFact(BaseModel): """ A class that holds the facts from a conversation in a format of object, subject, predicate. """object: str = Field(description="The object of the fact. For example, 'Adam' ")subject: str = Field(description="The subject of the fact. For example, 'Ice cream'")relationship: str = Field(description="The relationship between object and subject. Eg: 'LOVES'")class ConversationFacts(BaseModel): """ A class that holds a list of ConversationFact objects. """ facts: list[ConversationFact] = Field(description="A list of ConversationFact objects.")
llm_with_output = (
ChatOpenAI(model="gpt-4o-mini", openai_api_key=OPENAI_API_KEY)
.with_structured_output(ConversationFacts)
)
prompt = ChatPromptTemplate.from_messages(SystemMessagePromptTemplate.from_template("Extract the facts from the conversation."),MessagesPlaceholder(variable_name="history"),)chain = prompt | llm_with_outputchain.invoke({"history": history.messages,})
ConversationFacts(facts=[
ConversationFact(object='child', subject='Bluey', relationship='LOVES')
])
Graph RAG with LangChain and Neo4j