Memory graphs

Graph RAG with LangChain and Neo4j

Adam Cowley

Manager, Developer Education at Neo4j

Memory in RAG applications

Short-term memory

  • Short-lived, scoped lifespan
  • Conversation history

 

goldfish.png

Long-term memory

  • Semantic memory: facts about the world
  • Useful for hyper-personalization

elephant.png

Graph RAG with LangChain and Neo4j

Short-term memory

Graph RAG with LangChain and Neo4j

Short-term memory

Graph RAG with LangChain and Neo4j

Short-term memory

Graph RAG with LangChain and Neo4j

Short-term to long-term memory

Graph RAG with LangChain and Neo4j

Short-term to long-term memory

Graph RAG with LangChain and Neo4j

Short-term to long-term memory

Graph RAG with LangChain and Neo4j

Short-term to long-term memory

Graph RAG with LangChain and Neo4j

Short-term to long-term memory

Graph RAG with LangChain and Neo4j

Neo4j chat message history

from langchain_neo4j import Neo4jChatMessageHistory


history = Neo4jChatMessageHistory(
url=NEO4J_URI,
username=NEO4J_USERNAME,
password=NEO4J_PASSWORD,
session_id="session_id_1",
)
# Add a human message history.add_user_message("hi!")
# Add an AI message history.add_ai_message("what's up?")
Graph RAG with LangChain and Neo4j

Problems with storing everything

memory_methods.jpg

Graph RAG with LangChain and Neo4j

Neo4j chat message history

from langchain_neo4j import Neo4jChatMessageHistory

history = Neo4jChatMessageHistory(
    url=NEO4J_URI,
    username=NEO4J_USERNAME,
    password=NEO4J_PASSWORD,
    session_id="session_id_1",

window=10 # defaults to 3 messages
)
# Get history print(history.messages)
[HumanMessage(content='hi!', ...), AIMessage(content='whats up?', ...)]
Graph RAG with LangChain and Neo4j

Summarizing conversations

from pydantic import BaseModel, Field

class ConversationFact(BaseModel):
    """
    A class that holds the facts from a conversation in a format of object, subject, predicate.
    """

object: str = Field(description="The object of the fact. For example, 'Adam' ")
subject: str = Field(description="The subject of the fact. For example, 'Ice cream'")
relationship: str = Field(description="The relationship between object and subject. Eg: 'LOVES'")
class ConversationFacts(BaseModel): """ A class that holds a list of ConversationFact objects. """ facts: list[ConversationFact] = Field(description="A list of ConversationFact objects.")
Graph RAG with LangChain and Neo4j

Summarizing conversations

llm_with_output = (
    ChatOpenAI(model="gpt-4o-mini", openai_api_key=OPENAI_API_KEY)
        .with_structured_output(ConversationFacts)
)
Graph RAG with LangChain and Neo4j

Summarizing conversations

prompt = ChatPromptTemplate.from_messages(

SystemMessagePromptTemplate.from_template("Extract the facts from the conversation."),
MessagesPlaceholder(variable_name="history"),
)
chain = prompt | llm_with_output
chain.invoke({
"history": history.messages,
})
ConversationFacts(facts=[
    ConversationFact(object='child', subject='Bluey', relationship='LOVES')
])
Graph RAG with LangChain and Neo4j

Let's practice!

Graph RAG with LangChain and Neo4j

Preparing Video For Download...