Multi-Modal Models with Hugging Face
James Chapman
Curriculum Manager, DataCamp
from datasets import load_dataset import matplotlib.pyplot as plt dset = "rajuptvs/ecommerce_products_clip" dataset = load_dataset(dset)
print(dataset["train"][0]["Description"])
plt.imshow(dataset["train"][0]["image"]) plt.show()
Blive High quality premium Full sleeves printed
Shirt direct from the manufacturers.Gives you
a clean and classy look while also
making you feel comfortable.Trusted
brand online and no compromise on quality.
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
categories = ["shirt", "trousers", "shoes", "dress", "hat", "bag", "watch"]
inputs = processor(text=categories, images=dataset["train"][0]["image"], return_tensors="pt", padding=True) outputs = model(**inputs)
probs = outputs.logits_per_image.softmax(dim=1)
categories[probs.argmax().item()]
shirt
100
(perfect agreement) to 0
(no agreement)from torchmetrics.functional.multimodal import clip_score
image = dataset["train"][0]["image"] description = dataset["train"][0]["Description"]
from torchvision.transforms import ToTensor image = ToTensor()(image)*255
score = clip_score(image, description, "openai/clip-vit-base-patch32")
print(f"CLIP score: {score}")
CLIP score: 28.495952606201172
Multi-Modal Models with Hugging Face