Multi-Modal Models with Hugging Face
James Chapman
Curriculum Manager, DataCamp
ControlNet: image and text-guided conditional generation
from diffusers.utils import load_image image = load_image("http://301.nz/o81bf")
import cv2 from PIL import Image import numpy as np image = cv2.Canny(np.array(image), 100, 200)
image = image[:, :, None] image = np.concatenate([image, image, image], axis=2)
from diffusers.utils import load_image
image = load_image("http://301.nz/o81bf")
import cv2
from PIL import Image
import numpy as np
image = cv2.Canny(np.array(image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image],
axis=2)
canny_image = Image.fromarray(image)
from diffusers import StableDiffusionControlNetPipeline from diffusers import ControlNetModel import torch controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 )
pipe = pipe.to("cuda")
prompt = ["Albert Einstein, best quality, extremely detailed"]
generator = [ torch.Generator(device="cuda").manual_seed(2)]
output = pipe( prompt, canny_image, negative_prompt=["monochrome, lowres, bad anatomy, worst quality, low quality"], generator=generator, num_inference_steps=20)
1
), black (0
)from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True )
def make_inpaint_condition(image, image_mask): image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
image[image_mask > 0.5] = -1.0
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) image = torch.from_numpy(image) return image control_image = make_inpaint_condition(init_image, mask_image)
output = pipe( "The head of the mona lisa in the same style and quality as the original mona lisa with a clear smile and a slightly smaller head size",
num_inference_steps=40,
eta=1.0,
image=init_image, mask_image=mask_image, control_image=control_image, ).images[0]
Multi-Modal Models with Hugging Face