Nettoyage des données en Python
Adel Nehme
Content Developer @DataCamp
I) Incohérence des valeurs
'married', 'Maried', 'UNMARRIED', 'not married'.'married ', ' married '…II) Réduire un nombre trop important de catégories
0-20K, 20-40K … à partir des données sur le revenu continu des ménages'rich', 'poor'III) Vérifier que les données sont de type category (voir chapitre 1)
Capitalisation : 'married', 'Married', 'UNMARRIED', 'unmarried'..
# Get marriage status column
marriage_status = demographics['marriage_status']
marriage_status.value_counts()
unmarried 352
married 268
MARRIED 204
UNMARRIED 176
dtype: int64
# Get value counts on DataFrame
marriage_status.groupby('marriage_status').count()
household_income gender
marriage_status
MARRIED 204 204
UNMARRIED 176 176
married 268 268
unmarried 352 352
# Capitalizemarriage_status['marriage_status'] = marriage_status['marriage_status'].str.upper() marriage_status['marriage_status'].value_counts()
UNMARRIED 528
MARRIED 472
# Lowercasemarriage_status['marriage_status'] = marriage_status['marriage_status'].str.lower() marriage_status['marriage_status'].value_counts()
unmarried 528
married 472
Espaces à la fin : 'married ', 'married', 'unmarried', ' unmarried'…
# Get marriage status column
marriage_status = demographics['marriage_status']
marriage_status.value_counts()
unmarried 352
unmarried 268
married 204
married 176
dtype: int64
# Strip all spaces
demographics = demographics['marriage_status'].str.strip()
demographics['marriage_status'].value_counts()
unmarried 528
married 472
Créer des catégories à partir des données : colonne income_group à partir de la colonne income.
# Using qcut()
import pandas as pd
group_names = ['0-200K', '200K-500K', '500K+']
demographics['income_group'] = pd.qcut(demographics['household_income'], q = 3,
labels = group_names)
# Print income_group column
demographics[['income_group', 'household_income']]
category household_income
0 200K-500K 189243
1 500K+ 778533
..
Créer des catégories à partir des données : colonne income_group à partir de la colonne income.
# Using cut() - create category ranges and names
ranges = [0,200000,500000,np.inf]
group_names = ['0-200K', '200K-500K', '500K+']
# Create income group column
demographics['income_group'] = pd.cut(demographics['household_income'], bins=ranges,
labels=group_names)
demographics[['income_group', 'household_income']]
category Income
0 0-200K 189243
1 500K+ 778533
Réduisez le nombre de catégories : réduire le nombre de catégories dans la colonne catégorielle.
La colonne operating_system est : 'Microsoft', 'MacOS', 'IOS', 'Android', 'Linux'
La colonne operating_system devrait devenir : 'DesktopOS', 'MobileOS'
# Create mapping dictionary and replace
mapping = {'Microsoft':'DesktopOS', 'MacOS':'DesktopOS', 'Linux':'DesktopOS',
'IOS':'MobileOS', 'Android':'MobileOS'}
devices['operating_system'] = devices['operating_system'].replace(mapping)
devices['operating_system'].unique()
array(['DesktopOS', 'MobileOS'], dtype=object)
Nettoyage des données en Python