Introduction à la visualisation de données avec Seaborn
Erin Case
Data Scientist
Deux types de graphiques relationnels : les diagrammes de dispersion et les diagrammes linéaires
Diagrammes en nuages de points
Diagrammes linéaires
import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2_mean",
data=air_df_mean,
kind="scatter")
plt.show()
import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2_mean",
data=air_df_mean,
kind="line")
plt.show()
import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2_mean", data=air_df_loc_mean, kind="line", style="location", hue="location")
plt.show()
import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2_mean", data=air_df_loc_mean, kind="line", style="location", hue="location", markers=True)
plt.show()
import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2_mean", data=air_df_loc_mean, kind="line", style="location", hue="location", markers=True, dashes=False)
plt.show()
import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2",
data=air_df,
kind="scatter")
plt.show()
import matplotlib.pyplot as plt
import seaborn as sns
sns.relplot(x="hour", y="NO_2",
data=air_df,
kind="line")
plt.show()
La région ombrée est l'intervalle de confiance
import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2", data=air_df, kind="line", ci="sd")
plt.show()
import matplotlib.pyplot as plt import seaborn as sns sns.relplot(x="hour", y="NO_2", data=air_df, kind="line", ci=None)
plt.show()
Introduction à la visualisation de données avec Seaborn