Quantitative Risk Management in Python
Jamsheed Shorish
Computational Economist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential() model.add(Dense(10, input_dim=4, activation='sigmoid')) model.add(Dense(4))
training_input
matrixtraining_output
vectormodel.compile(loss='mean_squared_error', optimizer='rmsprop')
model.fit(training_input, training_output, epochs=100)
new_asset_prices
given to input layermodel.predict()
on new pricespredicted
portfolio weights# new asset prices are in the vector new_asset_prices
predicted = model.predict(new_asset_prices)
Quantitative Risk Management in Python