Monte Carlo Simulations in Python
Izzy Weber
Curriculum Manager, DataCamp
import scipy.stats as st
import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt
Theoretical probability mass function (PMF):
low = 3
high = 21
samples = st.randint.rvs(low, high, size=1000)
samples_dict = {"nums":samples}
sns.histplot(x="nums", data=samples_dict, bins=6, binwidth=0.3)
The probability distribution of the number of trials, $X$, needed to get one success, given the success probability, $p$.
Probability Mass Function, p = 0.5
Probability Mass Function, p = 0.3
p = 0.2
samples = st.geom.rvs(p, size=1000)
samples_dict = {"nums":samples}
sns.histplot(x="nums", data=samples_dict)
scipy.stats.poisson
)scipy.stats.binom
)Monte Carlo Simulations in Python