Deploying AI into Production with FastAPI
Matt Eckerle
Software and Data Engineering Leader
Required libraries:
FastAPI
: framework for building APIs with Pythonuvicorn
: fast ASGI server that runs Python web appsjoblib
: for loading the model
from fastapi import FastAPI
import uvicorn
import joblib
# Create the FastAPI app instance
app = FastAPI()
import joblib
# Load the pre-trained model
model = joblib.load('penguin_classifier.pkl')
# Check data type of model to verify model loading
print(type(model))
<class 'sklearn.pipeline.Pipeline'>
uvicorn main:app \
--host 0.0.0.0 \
--port 8080
import uvicorn
uvicorn.run(app,
host="0.0.0.0",
port=8080)
# FastAPI prediction endpoint
@app.post("/predict")
def predict(culmen_length_mm, culmen_depth_mm,
flipper_length_mm, body_mass_g):
features = [[culmen_length_mm, culmen_depth_mm,
flipper_length_mm, body_mass_g]]
prediction = model.predict(features)[0]
return {"predicted_species": prediction}
if __name__ == "__main__":
uvicorn.run(
app,
host="0.0.0.0",
port=8080)
Save all the code in a python file - your_api_script.py
$ python3 your_api_script.py
curl \
-X POST "http://localhost:8080/predict" \
-H "Content-Type: application/json" \
-d '{"culmen_length_mm": 39.1, "culmen_depth_mm": 18.7, "flipper_length_mm": 181, "body_mass_g": 3750}'
{
"prediction": "Adelie",
"confidence": 0.87
}
Deploying AI into Production with FastAPI