Deploying AI into Production with FastAPI
Matt Eckerle
Software and Data Engineering Leader
from pydantic import BaseModel
class AIJobV1(BaseModel):
job_name: str
data: bytes
class AIJobV1(BaseModel):
job_name: str
data: bytes
config: dict
from pydantic import BaseModel class AIJobV1(BaseModel): job_name: str data: bytes
class AIJobV2(BaseModel): job_name: str data: bytes config: dict
from fastapi import FastAPI app = FastAPI() @app.post("/v1/ai-job") def ai_job_v1(job: AIJobV1): ...
@app.post("/v2/ai-job") def ai_job_v2(job: AIJobV2): ...
from pydantic import BaseModel class AIJobV1(BaseModel): job_name: str data: bytes
from typing import Optional class AIJobV1(BaseModel): job_name: str data: bytes config: Optional[dict]
from fastapi import FastAPI
app = FastAPI(
description="AI Job API"
)
Deploying AI into Production with FastAPI