Pandas, partie 2

Python intermédiaire

Hugo Bowne-Anderson

Data Scientist at DataCamp

brics

import pandas as pd
brics = pd.read_csv("path/to/brics.csv", index_col = 0)
brics
         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
Python intermédiaire

Indexer et sélectionner les données

  • Crochets
  • Méthodes avancées
    • loc
    • iloc
Python intermédiaire

Accès aux colonnes [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics["country"]
BR          Brazil
RU          Russia
IN           India
CH           China
SA    South Africa
Name: country, dtype: object
Python intermédiaire

Accès aux colonnes [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
type(brics["country"])
pandas.core.series.Series
  • Tableau étiqueté 1D
Python intermédiaire

Accès aux colonnes [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[["country"]]
         country
BR        Brazil
RU        Russia
IN         India
CH         China
SA  South Africa
Python intermédiaire

Accès aux colonnes [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
type(brics[["country"]])
pandas.core.frame.DataFrame
Python intermédiaire

Accès aux colonnes [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermédiaire

Accès aux lignes [ ]

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics[1:4]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermédiaire

Accès aux lignes [ ]

         country    capital    area  population 
BR        Brazil   Brasilia   8.516      200.40    * 0 *
RU        Russia     Moscow  17.100      143.50    * 1 *
IN         India  New Delhi   3.286     1252.00    * 2 *
CH         China    Beijing   9.597     1357.00    * 3 *
SA  South Africa   Pretoria   1.221       52.98    * 4 *
brics[1:4]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermédiaire

Discussion [ ]

  • Crochets : fonctionnalité restreinte
  • Idéalement
    • Tableaux 2D NumPy
    • my_array[rows, columns]
  • pandas
    • loc (basé sur les étiquettes)
    • iloc (basé sur la position des entiers)
Python intermédiaire

Accès à la ligne loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc["RU"]
country       Russia
capital       Moscow
area            17.1
population     143.5
Name: RU, dtype: object
  • Ligne comme pandas Series
Python intermédiaire

Accès à la ligne loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU"]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
  • DataFrame
Python intermédiaire

Accès à la ligne loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermédiaire

Ligne et colonne loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"], ["country", "capital"]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermédiaire

Ligne et colonne loc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[:, ["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermédiaire

Résumé

  • Crochets
    • Accès aux colonnes brics[["country", "capital"]]
    • Accès aux lignes : uniquement par découpage brics[1:4]
  • loc (basé sur les étiquettes)
    • Accès aux lignes brics.loc[["RU", "IN", "CH"]]
    • Accès aux colonnes brics.loc[:, ["country", "capital"]]
    • Accès aux lignes et colonnes
      brics.loc[
      ["RU", "IN", "CH"], 
      ["country", "capital"]
      ]
      
Python intermédiaire

Accès aux lignes iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU"]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
brics.iloc[[1]]
   country capital  area  population
RU  Russia  Moscow  17.1       143.5
Python intermédiaire

Accès aux lignes iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermédiaire

Accès aux lignes iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[[1,2,3]]
   country    capital    area  population
RU  Russia     Moscow  17.100       143.5
IN   India  New Delhi   3.286      1252.0
CH   China    Beijing   9.597      1357.0
Python intermédiaire

Ligne et colonne iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[["RU", "IN", "CH"], ["country", "capital"]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermédiaire

Ligne et colonne iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[[1,2,3], [0, 1]]
   country    capital
RU  Russia     Moscow
IN   India  New Delhi
CH   China    Beijing
Python intermédiaire

Ligne et colonne iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.loc[:, ["country", "capital"]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermédiaire

Ligne et colonne iloc

         country    capital    area  population
BR        Brazil   Brasilia   8.516      200.40
RU        Russia     Moscow  17.100      143.50
IN         India  New Delhi   3.286     1252.00
CH         China    Beijing   9.597     1357.00
SA  South Africa   Pretoria   1.221       52.98
brics.iloc[:, [0,1]]
         country    capital
BR        Brazil   Brasilia
RU        Russia     Moscow
IN         India  New Delhi
CH         China    Beijing
SA  South Africa   Pretoria
Python intermédiaire

Passons à la pratique !

Python intermédiaire

Preparing Video For Download...