Writing Efficient Python Code
Logan Thomas
Scientific Software Technical Trainer, Enthought
sets
set
datatype with accompanying methods:intersection()
: all elements that are in both setsdifference()
: all elements in one set but not the othersymmetric_difference()
: all elements in exactly one setunion()
: all elements that are in either setin
operatorlist_a = ['Bulbasaur', 'Charmander', 'Squirtle']
list_b = ['Caterpie', 'Pidgey', 'Squirtle']
list_a = ['Bulbasaur', 'Charmander', 'Squirtle']
list_b = ['Caterpie', 'Pidgey', 'Squirtle']
list_a = ['Bulbasaur', 'Charmander', 'Squirtle']
list_b = ['Caterpie', 'Pidgey', 'Squirtle']
in_common = []
for pokemon_a in list_a:
for pokemon_b in list_b:
if pokemon_a == pokemon_b:
in_common.append(pokemon_a)
print(in_common)
['Squirtle']
list_a = ['Bulbasaur', 'Charmander', 'Squirtle']
list_b = ['Caterpie', 'Pidgey', 'Squirtle']
set_a = set(list_a)
print(set_a)
{'Bulbasaur', 'Charmander', 'Squirtle'}
set_b = set(list_b)
print(set_b)
{'Caterpie', 'Pidgey', 'Squirtle'}
set_a.intersection(set_b)
{'Squirtle'}
%%timeit
in_common = []
for pokemon_a in list_a:
for pokemon_b in list_b:
if pokemon_a == pokemon_b:
in_common.append(pokemon_a)
601 ns ± 17.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit in_common = set_a.intersection(set_b)
137 ns ± 3.01 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
set_a = {'Bulbasaur', 'Charmander', 'Squirtle'}
set_b = {'Caterpie', 'Pidgey', 'Squirtle'}
set_a.difference(set_b)
{'Bulbasaur', 'Charmander'}
set_a = {'Bulbasaur', 'Charmander', 'Squirtle'}
set_b = {'Caterpie', 'Pidgey', 'Squirtle'}
set_b.difference(set_a)
{'Caterpie', 'Pidgey'}
set_a = {'Bulbasaur', 'Charmander', 'Squirtle'}
set_b = {'Caterpie', 'Pidgey', 'Squirtle'}
set_a.symmetric_difference(set_b)
{'Bulbasaur', 'Caterpie', 'Charmander', 'Pidgey'}
set_a = {'Bulbasaur', 'Charmander', 'Squirtle'}
set_b = {'Caterpie', 'Pidgey', 'Squirtle'}
set_a.union(set_b)
{'Bulbasaur', 'Caterpie', 'Charmander', 'Pidgey', 'Squirtle'}
# The same 720 total Pokémon in each data structure
names_list = ['Abomasnow', 'Abra', 'Absol', ...]
names_tuple = ('Abomasnow', 'Abra', 'Absol', ...)
names_set = {'Abomasnow', 'Abra', 'Absol', ...}
# The same 720 total Pokémon in each data structure
names_list = ['Abomasnow', 'Abra', 'Absol', ...]
names_tuple = ('Abomasnow', 'Abra', 'Absol', ...)
names_set = {'Abomasnow', 'Abra', 'Absol', ...}
names_list = ['Abomasnow', 'Abra', 'Absol', ...]
names_tuple = ('Abomasnow', 'Abra', 'Absol', ...)
names_set = {'Abomasnow', 'Abra', 'Absol', ...}
%timeit 'Zubat' in names_list
7.63 µs ± 211 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit 'Zubat' in names_tuple
7.6 µs ± 394 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit 'Zubat' in names_set
37.5 ns ± 1.37 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
# 720 Pokémon primary types corresponding to each Pokémon
primary_types = ['Grass', 'Psychic', 'Dark', 'Bug', ...]
unique_types = []
for prim_type in primary_types:
if prim_type not in unique_types:
unique_types.append(prim_type)
print(unique_types)
['Grass', 'Psychic', 'Dark', 'Bug', 'Steel', 'Rock', 'Normal',
'Water', 'Dragon', 'Electric', 'Poison', 'Fire', 'Fairy', 'Ice',
'Ground', 'Ghost', 'Fighting', 'Flying']
# 720 Pokémon primary types corresponding to each Pokémon
primary_types = ['Grass', 'Psychic', 'Dark', 'Bug', ...]
unique_types_set = set(primary_types)
print(unique_types_set)
{'Grass', 'Psychic', 'Dark', 'Bug', 'Steel', 'Rock', 'Normal',
'Water', 'Dragon', 'Electric', 'Poison', 'Fire', 'Fairy', 'Ice',
'Ground', 'Ghost', 'Fighting', 'Flying'}
Writing Efficient Python Code