Introduction to the Polars DataFrame

Introduction to Polars

Liam Brannigan

Data Scientist and Polars Contributor

Meet your instructor

$$

  • Liam Brannigan, Lead Data Scientist
  • ML and Data Engineering Specialist
  • Polars Contributor

Profile picture of the instructor.

Introduction to Polars

Tabular data

shape: (49, 8)
| name        | type    | price | bedrooms | doubles | singles | review | beach |
| ---         | ---     | ---   | ---      | ---     | ---     | ---    | ---   |
| str         | str     | i64   | i64      | i64     | i64     | f64    | bool  |
|-------------|---------|-------|----------|---------|---------|--------|-------|
| Waves       | Cottage | 540   | 4        | 1       | 2       | 8.9    | false |
| Seashells   | Cottage | 540   | 4        | 2       | 2       | 8.7    | true  |
| Lake view   | Cottage | 714   | 3        | 1       | 4       | 9.2    | true  |
| Piran View  | null    | 775   | null     | 1       | 3       | 9.6    | false |
| Palma Villa | Cottage | 1772  | 4        | 1       | 2       | 9.6    | true  |
Introduction to Polars

Side-by-image of a Polar Bear walking through snow and a Panda in a forest.

  • Polars is typically faster than Pandas → parallel computation
  • Polars lazy mode enables optimized queries
Introduction to Polars

The Apache Arrow and Rust logos.

  • Apache Arrow: stores tabular data in memory
  • Rust: fast language for data processing
Introduction to Polars

A schematic of a database to illustrate loading data.

  • Loading and inspecting data
Introduction to Polars

A schematic of a database and some gears to illustrate a transformation.

  • Loading and inspecting data
  • Transforming data and optimization
Introduction to Polars

A schematic of a database, some gears and a chart to illustrate analysis.

  • Loading and inspecting data
  • Transforming data and optimization
  • Analyzing data
Introduction to Polars

Reading a CSV

import polars as pl


rentals = pl.read_csv("vacation_rentals.csv")
Introduction to Polars

First rows of a DataFrame

rentals.head(3)

First rows of the rentals DataFrame.

Introduction to Polars

First rows of a DataFrame

rentals.head(3)

The rentals DataFrame with the shape highlighted.

Introduction to Polars

First rows of a DataFrame

rentals.head(3)

The rentals DataFrame with the first column highlighted.

  • dtype: the type of data in a column
Introduction to Polars

First rows of a DataFrame

rentals.head(3)

The rentals DataFrame with the rentals column highlighted.

Introduction to Polars

Last rows of a DataFrame

rentals.tail()
shape: (5, 8)
| name                | type      | price | bedrooms | doubles | singles | review | beach |
| ---                 | ---       | ---   | ---      | ---     | ---     | ---    | ---   |
| str                 | str       | i64   | i64      | i64     | i64     | f64    | bool  |
|---------------------|-----------|-------|----------|---------|---------|--------|-------|
| Hengar Manor House  | Cottage   | 615   | 4        | 1       | 5       | 9.4    | false |
| Tudor Cottage Hayle | Cottage   | 489   | 3        | 2       | 3       | 8.9    | false |
| Tolcarne Apartments | Apartment | 1764  | 3        | 1       | 4       | 9.3    | true  |
| Tolcarne Apartments | Apartment | 1605  | 3        | 1       | 4       | 9.3    | true  |
| Tehidy Holiday Park | Cottage   | 637   | 4        | 2       | 4       | 9.0    | false |
Introduction to Polars

DataFrame metadata

rentals.shape
(49, 8)
rentals.columns
['name', 'type', 'price', 'bedrooms', 'doubles', 'singles', 'review', 'beach']
Introduction to Polars

DataFrame schema

rentals.schema
Schema([('name', String),
        ('type', String),
        ('price', Int64),
        ('bedrooms', Int64),
        ('doubles', Int64),
        ('singles', Int64),
        ('review', Float64),
        ('beach', Boolean)])
Introduction to Polars

Inspecting a DataFrame

rentals.glimpse()
Rows: 49
Columns: 8
$ name      <str> 'Waves', 'Seashells', 'Lake view', 'Piran View',...
$ type      <str> 'Cottage', 'Cottage', 'Cottage', None, 'Cottage',...
$ price     <i64> 540, 540, 714, 775, 1772, 934, 1947, 1026, 705, 863
$ bedrooms  <i64> 4, 4, 3, None, 4, 3, 4, 3, 4, 3
$ doubles   <i64> 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
$ singles   <i64> 2, 2, 4, 3, 2, 4, 2, 4, 2, 2
$ review    <f64> 8.9, 8.7, 9.2, 9.6, 9.6, 8.6, 9.6, 8.6, 9.7, 9.1
$ beach    <bool> False, True, True, False, True, True, True, True, True, True
Introduction to Polars

Let's practice!

Introduction to Polars

Preparing Video For Download...