Introduction aux LLM en Python
Jasmin Ludolf
Senior Data Science Content Developer, DataCamp



predictions: résultats du LLMreferences : résumés fournis par des personnes
rouge = evaluate.load("rouge")
predictions = ["""as we learn more about the frequency and size distribution of
exoplanets, we are discovering that terrestrial planets are exceedingly common."""]
references = ["""The more we learn about the frequency and size distribution of
exoplanets, the more confident we are that they are exceedingly common."""]
Scores ROUGE :
rouge1 : chevauchement des unigrammesrouge2 : chevauchement des bigrammesrougeL : longues sous-séquences qui se chevauchentRésultats ROUGE :
rouge1 : chevauchement des unigrammesrouge2 : chevauchement des bigrammesrougeL : longues sous-séquences qui se chevauchent
results = rouge.compute(predictions=predictions,
references=references)
print(results)
{'rouge1': 0.7441860465116279,
'rouge2': 0.4878048780487805,
'rougeL': 0.6976744186046512,
'rougeLsum': 0.6976744186046512}
bleu = evaluate.load("bleu") meteor = evaluate.load("meteor")prediction = ["He thought it right and necessary to become a knight-errant, roaming the world in armor, seeking adventures and practicing the deeds he had read about in chivalric tales."] reference = ["He believed it was proper and essential to transform into a knight-errant, traveling the world in armor, pursuing adventures, and enacting the heroic deeds he had encountered in tales of chivalry."]
results_bleu = bleu.compute(predictions=pred, references=ref)
results_meteor = meteor.compute(predictions=pred, references=ref)
print("Bleu: ", results_bleu['bleu'])
print("Meteor: ", results_meteor['meteor'])
Bleu: 0.19088841781992524
Meteor: 0.5350702240481536
0-1 : plus le score est élevé, mieux c'est

from evaluate import load
em_metric = load("exact_match")
exact_match = evaluate.load("exact_match")
predictions = ["The cat sat on the mat.",
"Theaters are great.",
"Like comparing oranges and apples."]
references = ["The cat sat on the mat?",
"Theaters are great.",
"Like comparing apples and oranges."]
results = exact_match.compute(
references=references, predictions=predictions)
print(results)
{'exact_match': 0.3333333333333333}
Introduction aux LLM en Python