Natural Language Processing (NLP) in Python
Fouad Trad
Machine Learning Engineer
from transformers import pipeline
classification_pipeline = pipeline(
task="sentiment-analysis", # or text-classification
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english" )
result = classification_pipeline("I really liked the movie!!")
print(result)
[{'label': 'POSITIVE', 'score': 0.9998093247413635}]
texts = ["I really liked the movie!!", "Great job ruining my day.", "This product exceeded my expectations.", "Wow, just what I needed... another problem.", "Absolutely fantastic experience!"]
results = classification_pipeline(texts)
print(results)
[{'label': 'POSITIVE', 'score': 0.9998093247413635},
{'label': 'NEGATIVE', 'score': 0.8666700124740601},
{'label': 'POSITIVE', 'score': 0.998874843120575},
{'label': 'POSITIVE', 'score': 0.98626708984375},
{'label': 'POSITIVE', 'score': 0.9998812675476074}]
texts = ["I really liked the movie!!", "Great job ruining my day.", "This product exceeded my expectations.", "Wow, just what I needed... another problem.", "Absolutely fantastic experience!"]
true_labels = ["POSITIVE", "NEGATIVE", "POSITIVE", "NEGATIVE", "POSITIVE"]
results = classification_pipeline(texts)
predicted_labels = [result['label'] for result in results]
from sklearn.metrics import accuracy_score accuracy = accuracy_score(true_labels, predicted_labels)
print(f"Accuracy: {accuracy}")
Accuracy: 0.80
Natural Language Processing (NLP) in Python