Natural Language Processing (NLP) in Python
Fouad Trad
Machine Learning Engineer
from transformers import pipeline
qqp_pipeline = pipeline( task="text-classification", model="textattack/bert-base-uncased-QQP" )
question1 = "How can I learn Python?" question2 = "What is the best way to study Python?"
result = qqp_pipeline({"text": question1, "text_pair": question2})
print(result)
{'label': 'LABEL_1', 'score': 0.6853412985801697}
from transformers import pipeline
qqp_pipeline = pipeline(
task="text-classification",
model="textattack/bert-base-uncased-QQP"
)
question1 = "How can I learn Python?"
question2 = "What is the capital of France?"
result = qqp_pipeline({"text": question1, "text_pair": question2})
print(result)
{'label': 'LABEL_0', 'score': 0.9999338388442993}
Useful for:
Done with models trained on the Corpus of Linguistic Acceptability (CoLA) dataset
from transformers import pipeline cola_classifier = pipeline( task="text-classification", model="textattack/distilbert-base-uncased-CoLA" )
result = cola_classifier("The cat sat on the mat.")
print(result)
[{'label': 'LABEL_1', 'score': 0.9918296933174133}]
from transformers import pipeline
cola_classifier = pipeline(
task="text-classification",
model="textattack/distilbert-base-uncased-CoLA"
)
result = cola_classifier("The cat on sat mat the.")
print(result)
[{'label': 'LABEL_0', 'score': 0.9628171324729919}]
Natural Language Processing (NLP) in Python