Constraint enforcement

Cleaning Data in Java

Dennis Lee

Software Engineer

Quality control for data

  • Validation annotations: quality control for data
  • Errors: missing countries, invalid amounts, negative boxes shipped
  • Typos: 1000 boxes instead of 100 boxes

 

 

Salesperson Country Product Date Amount Boxes Shipped
James Rudeforth UK Mint Chip Choco 4-Jan-22 $5320 100
Van Tuxwell India 85% Dark Bars 1-Aug-22 $7896 94
Gigi Bohling US Peanut Butter Cubes 7-Jul-22 $4501 91
Cleaning Data in Java

Basic validation annotations

import jakarta.validation.constraints.NotNull;     // Import rules for empty fields
import jakarta.validation.constraints.Size;        // Import rules for string length

public class ChocolateSale {
    @NotNull(message = "Salesperson cannot be empty")
    private String salesperson;


@NotNull(message = "Country cannot be empty") // Multiple rules can be stacked @Size(min = 2, max = 50) // Enforces country name length private String country;
@NotNull(message = "Product cannot be empty") private String product; }
Cleaning Data in Java

Numeric constraints

import jakarta.validation.constraints.Max;
import jakarta.validation.constraints.Min;
// We will show message outputs later
public class ChocolateSale {
    @Min(value = 0, message = "Sales amount must be positive")
    private Double amount;


@Min(value = 1, message = "Must ship at least 1 box") @Max(value = 1000, message = "Cannot ship more than 1000 boxes") private Integer boxesShipped; }
Cleaning Data in Java

Imports for constraint enforcement

// Stores unique validation errors (no duplicates)
import java.util.Set;
// Holds details about a single validation error (field, message, etc.)
import jakarta.validation.ConstraintViolation;
// Entry point for creating validators
import jakarta.validation.Validation;
// Checks data against rules
import jakarta.validation.Validator;
// Creates configured validators
import jakarta.validation.ValidatorFactory;
// Thrown when validation fails
import jakarta.validation.ConstraintViolationException;
Cleaning Data in Java

Implementing the validator

class SalesValidator {
    // Create tools for checking our data
    private static final ValidatorFactory factory = Validation.buildDefaultValidatorFactory();

// Get a validator to check sales records private static final Validator validator = factory.getValidator();
public static Set<ConstraintViolation<ChocolateSale>> validateSale(ChocolateSale sale) { // Check sale record and return any problems found return validator.validate(sale); } }
Cleaning Data in Java

Handling validation results

public class Main {
    public static void main(String[] args) {
        // Create sale with some invalid data (null country, negative amount)
        ChocolateSale sale = new ChocolateSale("James Rudeforth", null, "Mint Chip Choco",
                LocalDate.parse("2022-01-04"), -5320.0, 1500);


// Check sale for validation violations Set<ConstraintViolation<ChocolateSale>> violations = SalesValidator.validateSale(sale); // Print each validation error message violations.forEach(violation -> System.out.println(violation.getMessage()));
// If any violations found, throw exception if (!violations.isEmpty()) throw new ConstraintViolationException(violations); } }
Cleaning Data in Java

Validation output

Country cannot be empty
Sales amount must be positive
Cannot ship more than 1000 boxes

Exception in thread "main" jakarta.validation.ConstraintViolationException
Cleaning Data in Java

Validation prevents costly errors

  • @NotNull, @Size, @Min, and @Max catch errors early
  • Apply validation techniques to general business problems
  • First line of defense against costly data errors

Cacao beans being sifted in a factory environment

Cleaning Data in Java

Let's practice!

Cleaning Data in Java

Preparing Video For Download...