Upsampling & interpolation with .resample()

Manipulating Time Series Data in Python

Stefan Jansen

Founder & Lead Data Scientist at Applied Artificial Intelligence

Frequency conversion & transformation methods

  • .resample(): similar to .groupby()

  • Groups data within resampling period and applies one or several methods to each group

  • New date determined by offset - start, end, etc

  • Upsampling: fill from existing or interpolate values

  • Downsampling: apply aggregation to existing data

Manipulating Time Series Data in Python

Getting started: monthly unemployment rate

unrate = pd.read_csv('unrate.csv', parse_dates['Date'], index_col='Date')

unrate.info()
DatetimeIndex: 208 entries, 2000-01-01 to 2017-04-01
Data columns (total 1 columns):
UNRATE    208 non-null float64 # no frequency information
dtypes: float64(1)
unrate.head()
            UNRATE
DATE
2000-01-01     4.0
2000-02-01     4.1
2000-03-01     4.0
2000-04-01     3.8
2000-05-01     4.0
  • Reporting date: 1st day of month
Manipulating Time Series Data in Python

Resampling Period & Frequency Offsets

  • Resample creates new date for frequency offset
  • Several alternatives to calendar month end

 

Frequency Alias Sample Date
Calendar Month End M 2017-04-30
Calendar Month Start MS 2017-04-01
Business Month End BM 2017-04-28
Business Month Start BMS 2017-04-03
Manipulating Time Series Data in Python

Resampling logic

ch2_3_v2 - Upsampling & Interpolation.015.png

Manipulating Time Series Data in Python

Resampling logic

ch2_3_v2 - Upsampling & Interpolation.016.png

Manipulating Time Series Data in Python

Assign frequency with .resample()

unrate.asfreq('MS').info()
DatetimeIndex: 208 entries, 2000-01-01 to 2017-04-01
Freq: MS
Data columns (total 1 columns):
UNRATE    208 non-null float64
dtypes: float64(1)
unrate.resample('MS') # creates Resampler object
DatetimeIndexResampler [freq=<MonthBegin>, axis=0, closed=left, 
                        label=left, convention=start, base=0]
Manipulating Time Series Data in Python

Assign frequency with .resample()

unrate.asfreq('MS').equals(unrate.resample('MS').asfreq())
True
  • .resample(): returns data only when calling another method
Manipulating Time Series Data in Python

Quarterly real GDP growth

gdp = pd.read_csv('gdp.csv')

gdp.info()
DatetimeIndex: 69 entries, 2000-01-01 to 2017-01-01
Data columns (total 1 columns):
gpd    69 non-null float64 # no frequency info
dtypes: float64(1)
gdp.head(2)
            gpd
DATE
2000-01-01  1.2
2000-04-01  7.8
Manipulating Time Series Data in Python

Interpolate monthly real GDP growth

gdp_1 = gdp.resample('MS').ffill().add_suffix('_ffill')
       gpd_ffill
DATE
2000-01-01  1.2
2000-02-01  1.2
2000-03-01  1.2
2000-04-01  7.8
Manipulating Time Series Data in Python

Interpolate monthly real GDP growth

gdp_2 = gdp.resample('MS').interpolate().add_suffix('_inter')
            gpd_inter
DATE
2000-01-01  1.200000
2000-02-01  3.400000
2000-03-01  5.600000
2000-04-01  7.800000
  • .interpolate(): finds points on straight line between existing data
Manipulating Time Series Data in Python

Concatenating two DataFrames

df1 = pd.DataFrame([1, 2, 3], columns=['df1'])

df2 = pd.DataFrame([4, 5, 6], columns=['df2'])
pd.concat([df1, df2])
   df1  df2
0  1.0  NaN
1  2.0  NaN
2  3.0  NaN
0  NaN  4.0
1  NaN  5.0
2  NaN  6.0
Manipulating Time Series Data in Python

Concatenating two DataFrames

pd.concat([df1, df2], axis=1)
   df1  df2
0    1    4
1    2    5
2    3    6
  • axis=1: concatenate horizontally
Manipulating Time Series Data in Python

Plot interpolated real GDP growth

pd.concat([gdp_1, gdp_2], axis=1).loc['2015':].plot()

ch2_3_v2 - Upsampling & Interpolation.032.png

Manipulating Time Series Data in Python

Combine GDP growth & unemployment

pd.concat([unrate, gdp_inter], axis=1).plot();

ch2_3_v2 - Upsampling & Interpolation.034.png

Manipulating Time Series Data in Python

Let's practice!

Manipulating Time Series Data in Python

Preparing Video For Download...