Manipulating Time Series Data in Python
Stefan Jansen
Founder & Lead Data Scientist at Applied Artificial Intelligence
import pandas as pd # assumed imported going forward from datetime import datetime # To manually create dates
time_stamp = pd.Timestamp(datetime(2017, 1, 1))
pd.Timestamp('2017-01-01') == time_stamp
True # Understands dates as strings
time_stamp # type: pandas.tslib.Timestamp
Timestamp('2017-01-01 00:00:00')
time_stamp.year
2017
time_stamp.day_name()
'Sunday'
period = pd.Period('2017-01')
period # default: month-end
Period('2017-01', 'M')
period.asfreq('D') # convert to daily
Period('2017-01-31', 'D')
period.to_timestamp().to_period('M')
Period('2017-01', 'M')
pd.Period()
to pd.Timestamp()
and backperiod + 2
Period('2017-03', 'M')
pd.Timestamp('2017-01-31', 'M') + 1
Timestamp('2017-02-28 00:00:00', freq='M')
pd.date_range
: start
, end
, periods
, freq
index = pd.date_range(start='2017-1-1', periods=12, freq='M')
index
DatetimeIndex(['2017-01-31', '2017-02-28', '2017-03-31', ...,
'2017-09-30', '2017-10-31', '2017-11-30', '2017-12-31'],
dtype='datetime64[ns]', freq='M')
pd.DateTimeIndex
: sequence of Timestamp objects with frequency infoindex[0]
Timestamp('2017-01-31 00:00:00', freq='M')
index.to_period()
PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', ...,
'2017-11', '2017-12'], dtype='period[M]', freq='M')
pd.DataFrame({'data': index}).info()
RangeIndex: 12 entries, 0 to 11
Data columns (total 1 columns):
data 12 non-null datetime64[ns]
dtypes: datetime64[ns](1)
np.random.random
:[0,1]
data = np.random.random((size=12,2))
pd.DataFrame(data=data, index=index).info()
DatetimeIndex: 12 entries, 2017-01-31 to 2017-12-31
Freq: M
Data columns (total 2 columns):
0 12 non-null float64
1 12 non-null float64
dtypes: float64(2)
Manipulating Time Series Data in Python