Manipulating Time Series Data in Python
Stefan Jansen
Founder & Lead Data Scientist at Applied Artificial Intelligence
Daily return correlations:
Calculate among all components
Visualize the result as heatmap
Write results to excel using .xls
and .xlsx
formats:
Single worksheet
Multiple worksheets
data = DataReader(tickers, 'google', start='2016', end='2017')['Close']
data.info()
DatetimeIndex: 252 entries, 2016-01-04 to 2016-12-30
Data columns (total 12 columns):
ABB 252 non-null float64
BABA 252 non-null float64
JNJ 252 non-null float64
JPM 252 non-null float64
KO 252 non-null float64
ORCL 252 non-null float64
PG 252 non-null float64
T 252 non-null float64
TM 252 non-null float64
UPS 252 non-null float64
WMT 252 non-null float64
XOM 252 non-null float64
daily_returns = data.pct_change()
correlations = daily_returns.corr()
ABB BABA JNJ JPM KO ORCL PG T TM UPS WMT XOM
ABB 1.00 0.40 0.33 0.56 0.31 0.53 0.34 0.29 0.48 0.50 0.15 0.48
BABA 0.40 1.00 0.27 0.27 0.25 0.38 0.21 0.17 0.34 0.35 0.13 0.21
JNJ 0.33 0.27 1.00 0.34 0.30 0.37 0.42 0.35 0.29 0.45 0.24 0.41
JPM 0.56 0.27 0.34 1.00 0.22 0.57 0.27 0.13 0.49 0.56 0.14 0.48
KO 0.31 0.25 0.30 0.22 1.00 0.31 0.62 0.47 0.33 0.50 0.25 0.29
ORCL 0.53 0.38 0.37 0.57 0.31 1.00 0.41 0.32 0.48 0.54 0.21 0.42
PG 0.34 0.21 0.42 0.27 0.62 0.41 1.00 0.43 0.32 0.47 0.33 0.34
T 0.29 0.17 0.35 0.13 0.47 0.32 0.43 1.00 0.28 0.41 0.31 0.33
TM 0.48 0.34 0.29 0.49 0.33 0.48 0.32 0.28 1.00 0.52 0.20 0.30
UPS 0.50 0.35 0.45 0.56 0.50 0.54 0.47 0.41 0.52 1.00 0.33 0.45
WMT 0.15 0.13 0.24 0.14 0.25 0.21 0.33 0.31 0.20 0.33 1.00 0.21
XOM 0.48 0.21 0.41 0.48 0.29 0.42 0.34 0.33 0.30 0.45 0.21 1.00
sns.heatmap(correlations, annot=True)
plt.xticks(rotation=45)
plt.title('Daily Return Correlations')
correlations.to_excel(excel_writer= 'correlations.xls',
sheet_name='correlations',
startrow=1,
startcol=1)
data.index = data.index.date # Keep only date component
with pd.ExcelWriter('stock_data.xlsx') as writer:
corr.to_excel(excel_writer=writer, sheet_name='correlations')
data.to_excel(excel_writer=writer, sheet_name='prices')
data.pct_change().to_excel(writer, sheet_name='returns')
Manipulating Time Series Data in Python