Compare time series growth rates

Manipulating Time Series Data in Python

Stefan Jansen

Founder & Lead Data Scientist at Applied Artificial Intelligence

Comparing stock performance

  • Stock price series: hard to compare at different levels

  • Simple solution: normalize price series to start at 100

  • Divide all prices by first in series, multiply by 100

    • Same starting point

    • All prices relative to starting point

    • Difference to starting point in percentage points

Manipulating Time Series Data in Python

Normalizing a single series (1)

google = pd.read_csv('google.csv', parse_dates=['date'], index_col='date')

google.head(3)
             price
date
2010-01-04  313.06
2010-01-05  311.68
2010-01-06  303.83
first_price = google.price.iloc[0]  # int-based selection

first_price
313.06
first_price == google.loc['2010-01-04', 'price']
True
Manipulating Time Series Data in Python

Normalizing a single series (2)

normalized = google.price.div(first_price).mul(100)

normalized.plot(title='Google Normalized Series')

ch2_1_v2 - Compare Time Series Trends.017.png

Manipulating Time Series Data in Python

Normalizing multiple series (1)

prices = pd.read_csv('stock_prices.csv',
                     parse_dates=['date'],
                     index_col='date')

prices.info()
DatetimeIndex: 1761 entries, 2010-01-04 to 2016-12-30
Data columns (total 3 columns):
AAPL    1761 non-null float64
GOOG    1761 non-null float64
YHOO    1761 non-null float64
dtypes: float64(3)
prices.head(2)
             AAPL    GOOG   YHOO
Date
2010-01-04  30.57  313.06  17.10
2010-01-05  30.63  311.68  17.23
Manipulating Time Series Data in Python

Normalizing multiple series (2)

prices.iloc[0]
AAPL     30.57
GOOG    313.06
YHOO     17.10
Name: 2010-01-04 00:00:00, dtype: float64
normalized = prices.div(prices.iloc[0])

normalized.head(3)
                AAPL      GOOG      YHOO
Date
2010-01-04  1.000000  1.000000  1.000000
2010-01-05  1.001963  0.995592  1.007602
2010-01-06  0.985934  0.970517  1.004094
  • .div(): automatic alignment of Series index & DataFrame columns
Manipulating Time Series Data in Python

Comparing with a benchmark (1)

index = pd.read_csv('benchmark.csv', parse_dates=['date'], index_col='date')

index.info()
DatetimeIndex: 1826 entries, 2010-01-01 to 2016-12-30
Data columns (total 1 columns):
SP500    1762 non-null float64
dtypes: float64(1)
prices = pd.concat([prices, index], axis=1).dropna()

prices.info()
DatetimeIndex: 1761 entries, 2010-01-04 to 2016-12-30
Data columns (total 4 columns):
AAPL     1761 non-null float64
GOOG     1761 non-null float64
YHOO     1761 non-null float64
SP500    1761 non-null float64
dtypes: float64(4)
Manipulating Time Series Data in Python

Comparing with a benchmark (2)

prices.head(1)
             AAPL    GOOG   YHOO    SP500
2010-01-04  30.57  313.06  17.10  1132.99
normalized = prices.div(prices.iloc[0]).mul(100)

normalized.plot()

ch2_1_v2 - Compare Time Series Trends.031.png

Manipulating Time Series Data in Python

Plotting performance difference

diff = normalized[tickers].sub(normalized['SP500'], axis=0)
                GOOG      YHOO      AAPL
2010-01-04  0.000000  0.000000  0.000000
2010-01-05 -0.752375  0.448669 -0.115294
2010-01-06 -3.314604  0.043069 -1.772895
  • .sub(..., axis=0): Subtract a Series from each DataFrame column by aligning indexes
Manipulating Time Series Data in Python

Plotting performance difference

diff.plot()

ch2_1_v2 - Compare Time Series Trends.035.png

Manipulating Time Series Data in Python

Let's practice!

Manipulating Time Series Data in Python

Preparing Video For Download...