Time Series Analysis in Python
Rob Reider
Adjunct Professor, NYU-Courant Consultant, Quantopian
$\large \quad \quad \quad \quad R_t \ = \ \ \mu \ \ + \ \ \epsilon_t \ + \ \ \theta \ \epsilon_{t-1} $
$\large \quad \quad \quad \quad R_t \ \ = \ \ \mu \ \ + \ \ \epsilon_t\ + \ \ \theta \ \epsilon_{t-1} $
$\large \theta=0.9$
$\large \theta=0.5$
$\large \theta=-0.9$
$\large \theta=-0.5$
$\large \quad \quad R_t = \mu + \epsilon_t - \theta_1 \ \epsilon_{t-1}$
$\large \quad \quad R_t = \mu + \epsilon_t - \theta_1 \ \epsilon_{t-1} - \theta_2 \ \epsilon_{t-2}$
$\large \quad \quad R_t = \mu + \epsilon_t - \theta_1 \ \epsilon_{t-1} - \theta_2 \ \epsilon_{t-2} - \theta_3 \ \epsilon_{t-3}$
from statsmodels.tsa.arima_process import ArmaProcess
ar = np.array([1])
ma = np.array([1, 0.5])
AR_object = ArmaProcess(ar, ma)
simulated_data = AR_object.generate_sample(nsample=1000)
plt.plot(simulated_data)
Time Series Analysis in Python