Einführung in das Data Engineering
Vincent Vankrunkelsven
Data Engineer @ DataCamp
| customer_id | Staat | Erstellt am | |
|---|---|---|---|
| 1 | [email protected] | New York | 2019-01-01 07:00:00. |
| customer_id | Benutzername | Domäne | |
|---|---|---|---|
| 1 | [email protected] | Jane Doe | theweb.com |
customer_df # Pandas DataFrame with customer data # Split email column into 2 columns on the '@' symbol split_email = customer_df.email.str.split("@", expand=True)# At this point, split_email will have 2 columns, a first # one with everything before @, and a second one with # everything after @ # Create 2 new columns using the resulting DataFrame. customer_df = customer_df.assign( username=split_email[0], domain=split_email[1], )
Daten in PySpark extrahieren
import pyspark.sql spark = pyspark.sql.SparkSession.builder.getOrCreate()spark.read.jdbc("jdbc:postgresql://localhost:5432/pagila","customer",properties={"user":"repl","password":"password"})
Eine neue Bewertungstabelle
| customer_id | film_id | rating |
|---|---|---|
| 1 | 2 | 1 |
| 2 | 1 | 5 |
| 2 | 2 | 3 |
| ... | ... | ... |
Die Kundentabelle
| customer_id | first_name | last_name | ... |
|---|---|---|---|
| 1 | Jane | Doe | ... |
| 2 | Joe | Doe | ... |
| ... | ... | ... | ... |
customer_id überschneidet sich mit der Bewertungstabelle
customer_df # PySpark DataFrame with customer data ratings_df # PySpark DataFrame with ratings data# Groupby ratings ratings_per_customer = ratings_df.groupBy("customer_id").mean("rating")# Join on customer ID customer_df.join( ratings_per_customer, customer_df.customer_id==ratings_per_customer.customer_id )
Einführung in das Data Engineering