Efficient AI Model Training with PyTorch
Dennis Lee
Data Engineer













scaler = torch.amp.GradScaler()for batch in train_dataloader: inputs, targets = batch["input_ids"], batch["labels"]with torch.autocast(device_type="cpu", dtype=torch.float16):outputs = model(inputs, labels=targets) loss = outputs.lossscaler.scale(loss).backward()scaler.step(optimizer)scaler.update()optimizer.zero_grad()


accelerator = Accelerator(mixed_precision="fp16")model, optimizer, train_dataloader, lr_scheduler = \ accelerator.prepare(model, optimizer, train_dataloader, lr_scheduler)for batch in train_dataloader: inputs, targets = batch["input_ids"], batch["labels"] outputs = model(inputs, labels=targets) loss = outputs.loss accelerator.backward(loss) optimizer.step() optimizer.zero_grad()


training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", fp16=True )trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["validation"], compute_metrics=compute_metrics, )trainer.train()
Efficient AI Model Training with PyTorch