Efficient AI Model Training with PyTorch
Dennis Lee
Data Engineer



for batch in dataloader:optimizer.zero_grad()inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device)outputs = model(inputs)loss = outputs.lossloss.backward()optimizer.step() scheduler.step()
.to(device)Accelerator provides an interface for distributed trainingfrom accelerate import Accelerator
accelerator = Accelerator(
device_placement=True
)
device_placement (bool, default True): Handle device placement by defaultfrom transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert-base-cased", return_dict=True)
Adamfrom torch.optim import Adam
optimizer = Adam(params=model.parameters(), lr=2e-5)
from transformers import get_linear_schedule_with_warmup lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer,num_warmup_steps=num_warmup_steps,num_training_steps=num_training_steps)
optimizer (obj): PyTorch optimizer, like Adamnum_warmup_steps (int): steps to linearly increase lr, set to int(num_training_steps * 0.1)num_training_steps (int): total training steps, set to len(train_dataloader) * num_epochsprepare method handles device placementmodel, optimizer, dataloader, lr_scheduler = \ accelerator.prepare(model,optimizer,dataloader,lr_scheduler)
for batch in dataloader:optimizer.zero_grad()inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device)
for batch in dataloader:optimizer.zero_grad()inputs, targets = batch
for batch in dataloader:optimizer.zero_grad()inputs, targets = batchoutputs = model(inputs)loss = outputs.loss loss.backward()
for batch in dataloader:optimizer.zero_grad()inputs, targets = batchoutputs = model(inputs) loss = outputs.lossaccelerator.backward(loss)optimizer.step() scheduler.step()
loss.backward with acceleratorBefore Accelerator
inputs.to(device)targets.to(device)loss.backward()After Accelerator
accelerator.prepare(model)accelerator.prepare(dataloader)accelerator.backward(loss)Efficient AI Model Training with PyTorch