Introduction to Amazon Bedrock
Nikhil Rangarajan
Data Scientist

AI models can perpetuate biases and generate harmful content
Privacy concerns with sensitive data handling

AI models can perpetuate biases and generate harmful content
Privacy concerns with sensitive data handling
Legal / regulatory compliance requirements

AI models can perpetuate biases and generate harmful content
Privacy concerns with sensitive data handling
Legal / regulatory compliance requirements
Potential for misuse in spreading misinformation

AI models can perpetuate biases and generate harmful content
Privacy concerns with sensitive data handling
Legal / regulatory compliance requirements
Potential for misuse in spreading misinformation
Business reputation and stakeholder trust


def moderate_content_claude(text, strictness="medium"):instruction = {"high": "Strictly analyze for inappropriate content. ","medium": "Check for obviously toxic language. ","low": "Check the tone. "}prompt = f"{instruction[strictness]}\n{text}" body=json.dumps({"anthropic_version": "bedrock-2023-05-31", "max_tokens": 100, "temperature": 0.2, "messages": prompt}) # Low temperature response = bedrock.invoke_model(body=body, modelId=model_id) response_body = json.loads(response.get('body').read()) return response_body


🛑 Safety First
🚦 Implementation
🔦 Continuous Improvement
Introduction to Amazon Bedrock