Scalable AI Models with PyTorch Lightning
Sergiy Tkachuk
Director, GenAI Productivity
$$

$$
from lightning.pytorch.callbacks import Callback class MyPrintingCallback(Callback):def on_train_start(self, trainer, pl_module): print("Training is starting")def on_train_end(self, trainer, pl_module): print("Training is ending")
$$
Automatically saves model at specified intervals
Choose metric to track
Keep only the best model
from lightning.pytorch.callbacks import ModelCheckpointcheckpoint_callback = ModelCheckpoint(monitor='val_loss',dirpath='my/path/',filename='{epoch}-{val_loss:.2f}',save_top_k=1,mode='min')
$$
from lightning.pytorch.callbacks import EarlyStopping early_stopping_callback = EarlyStopping(monitor='val_loss',patience=3,mode='min')
from lightning.pytorch import Trainer from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpointcheckpoint = ModelCheckpoint( monitor='val_accuracy', save_top_k=2, mode='max')early_stopping = EarlyStopping( monitor='val_accuracy', patience=5, mode='max')trainer = Trainer(max_epochs=50, callbacks=[checkpoint, early_stopping])
Scalable AI Models with PyTorch Lightning