Image Modeling with Keras
Ariel Rokem
Senior Data Scientist, University of Washington
model.layers
[<keras.layers.convolutional.Conv2D at 0x109f10c18>,
<keras.layers.convolutional.Conv2D at 0x109ec5ba8>,
<keras.layers.core.Flatten at 0x1221ffcc0>,
<keras.layers.core.Dense at 0x1221ffef0>]
conv1 = model.layers[0]
weights1 = conv1.get_weights()
len(weights1)
2
kernels1 = weights1[0]
kernels1.shape
(3, 3, 1, 5)
kernel1_1 = kernels1[:, :, 0, 0]
kernel1_1.shape
(3, 3)
plt.imshow(kernel1_1)
test_image = test_data[3, :, :, 0]
plt.imshow(test_image)
filtered_image = convolution(test_image, kernel1_1)
plt.imshow(filtered_image)
test_image = test_data[4, :, :, 1]
plt.imshow(test_image)
filtered_image = convolution(test_image, kernel1_1)
plt.imshow(filtered_img)
kernel1_2 = kernels[:, :, 0, 1]
filtered_image = convolution(test_image, kernel1_2)
plt.imshow(filtered_img)
Image Modeling with Keras