Introduction à PySpark
Benjamin Schmidt
Data Engineer
# Initialiser la session Spark spark = SparkSession.builder.appName("Spark SQL Example").getOrCreate()# DataFrame d'exemple data = [("Alice", "HR", 30), ("Bob", "IT", 40), ("Cathy", "HR", 28)] columns = ["Name", "Department", "Age"] df = spark.createDataFrame(data, schema=columns)# Enregistrer le DataFrame comme vue temporaire df.createOrReplaceTempView("people")# Requête SQL result = spark.sql("SELECT Name, Age FROM people WHERE Age > 30") result.show()
df = spark.read.csv("path/to/your/file.csv", header=True, inferSchema=True)
# Enregistrer le DataFrame comme vue temporaire
df.createOrReplaceTempView("employees")
# Résultat de la requête SQL query_result = spark.sql("SELECT Name, Salary FROM employees WHERE Salary > 3000")# Transformation du DataFrame high_earners = query_result.withColumn("Bonus", query_result.Salary * 0.1) high_earners.show()
Introduction à PySpark