Case Studies in Statistical Thinking
Justin Bois
Lecturer, Caltech
x, y = ecdf(nuclear_incident_times)
_ = plt.plot(x, y, marker='.', linestyle='none')
x, y = ecdf(nuclear_incident_times)
_ = plt.plot(x, y, marker='.', linestyle='none')
import dc_stat_think as dcst
dcst.pearson_r?
Signature: dcst.pearson_r(data_1, data_2)
Docstring: Compute the Pearson correlation coefficient between two
samples.
Parameters
----------
data_1 : array_like
One-dimensional array of data.
data_2 : array_like
One-dimensional array of data.
Returns
-------
output : float
The Pearson correlation coefficient between `data_1`
and `data_2`.
File: usr/local/lib/python3.5/site-packages/
dc_stat_think-0.1.4-py3.6.egg/dc_stat_think/dc_stat_think.py
Type: function
x, y = dcst.ecdf(nuclear_incident_times)
% pip install dc_stat_think
Case Studies in Statistical Thinking