Case Studies in Statistical Thinking
Justin Bois
Lecturer, Caltech
# Generate samples from theoretical distribution
x_f = np.random.normal(mean_time_gap, std_time_gap, size=10000)
# Initialize K-S replicates
reps = np.empty(1000)
# Draw replicates
for i in range(1000):
# Draw samples for comparison
x_samp = np.random.normal(
mean_time_gap, std_time_gap, size=len(time_gap)
)
# Compute K-S statistic
reps[i] = ks_stat(x_samp, x_f)
# Compute p-value
p_val = np.sum(reps >= ks_stat(time_gap, x_f)) / 1000
Case Studies in Statistical Thinking