Compute correlations between time series

Visualizing Time Series Data in Python

Thomas Vincent

Head of Data Science, Getty Images

Trends in Jobs data

print(trend_df)
datestamp  Agriculture  Business services  Construction

2000-01-01          NaN                NaN           NaN   
2000-02-01          NaN                NaN           NaN   
2000-03-01          NaN                NaN           NaN   
2000-04-01          NaN                NaN           NaN   
2000-05-01          NaN                NaN           NaN   
2000-06-01          NaN                NaN           NaN   
2000-07-01     9.170833           4.787500      6.329167   
2000-08-01     9.466667           4.820833      6.304167   
...
Visualizing Time Series Data in Python

Plotting a clustermap of the jobs correlation matrix

# Get correlation matrix of the seasonality_df DataFrame
trend_corr = trend_df.corr(method='spearman')

# Customize the clustermap of the seasonality_corr
correlation matrix
fig = sns.clustermap(trend_corr, annot=True, linewidth=0.4)

plt.setp(fig.ax_heatmap.yaxis.get_majorticklabels(),
rotation=0)

plt.setp(fig.ax_heatmap.xaxis.get_majorticklabels(),
rotation=90)
Visualizing Time Series Data in Python

The jobs correlation matrix

The jobs correlation matrix

Visualizing Time Series Data in Python

Let's practice!

Visualizing Time Series Data in Python

Preparing Video For Download...