Visualizing Time Series Data in Python
Thomas Vincent
Head of Data Science, Getty Images
print(trend_df)
datestamp Agriculture Business services Construction
2000-01-01 NaN NaN NaN
2000-02-01 NaN NaN NaN
2000-03-01 NaN NaN NaN
2000-04-01 NaN NaN NaN
2000-05-01 NaN NaN NaN
2000-06-01 NaN NaN NaN
2000-07-01 9.170833 4.787500 6.329167
2000-08-01 9.466667 4.820833 6.304167
...
# Get correlation matrix of the seasonality_df DataFrame
trend_corr = trend_df.corr(method='spearman')
# Customize the clustermap of the seasonality_corr
correlation matrix
fig = sns.clustermap(trend_corr, annot=True, linewidth=0.4)
plt.setp(fig.ax_heatmap.yaxis.get_majorticklabels(),
rotation=0)
plt.setp(fig.ax_heatmap.xaxis.get_majorticklabels(),
rotation=90)
Visualizing Time Series Data in Python