Visualizing Time Series Data in Python
Thomas Vincent
Head of Data Science, Getty Images
plt
aliasimport matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import pandas as pd
df = df.set_index('date_column')
df.plot()
plt.show()
plt.style.use('fivethirtyeight')
df.plot()
plt.show()
print(plt.style.available)
['seaborn-dark-palette', 'seaborn-darkgrid',
'seaborn-dark', 'seaborn-notebook',
'seaborn-pastel', 'seaborn-white',
'classic', 'ggplot', 'grayscale',
'dark_background', 'seaborn-poster',
'seaborn-muted', 'seaborn', 'bmh',
'seaborn-paper', 'seaborn-whitegrid',
'seaborn-bright', 'seaborn-talk',
'fivethirtyeight', 'seaborn-colorblind',
'seaborn-deep', 'seaborn-ticks']
ax = df.plot(color='blue')
ax.set_xlabel('Date')
ax.set_ylabel('The values of my Y axis')
ax.set_title('The title of my plot')
plt.show()
ax = df.plot(figsize=(12, 5), fontsize=12,
linewidth=3, linestyle='--')
ax.set_xlabel('Date', fontsize=16)
ax.set_ylabel('The values of my Y axis', fontsize=16)
ax.set_title('The title of my plot', fontsize=16)
plt.show()
Visualizing Time Series Data in Python