Visualizing Time Series Data in Python
Thomas Vincent
Head of Data Science, Getty Images
The .describe()
method automatically computes key statistics of all numeric columns in your DataFrame
print(df.describe())
co2
count 2284.000000
mean 339.657750
std 17.100899
min 313.000000
25% 323.975000
50% 337.700000
75% 354.500000
max 373.900000
ax1 = df.boxplot()
ax1.set_xlabel('Your first boxplot')
ax1.set_ylabel('Values of your data')
ax1.set_title('Boxplot values of your data')
plt.show()
ax2 = df.plot(kind='hist', bins=100)
ax2.set_xlabel('Your first histogram')
ax2.set_ylabel('Frequency of values in your data')
ax2.set_title('Histogram of your data with 100 bins')
plt.show()
ax3 = df.plot(kind='density', linewidth=2)
ax3.set_xlabel('Your first density plot')
ax3.set_ylabel('Density values of your data')
ax3.set_title('Density plot of your data')
plt.show()
Visualizing Time Series Data in Python